Preparation and Reactivity of Tris(trifluoromethylselanyl)carbenium $[(CF_3Se)_3C^+]$ and Trifluoromethylsulfanylacetic Acid Derivatives $[(CF_3S)_{3-n}CX_n(O)R]^{\frac{1}{n}}$

Alois Haas* and Guido Möller

Lehrstuhl für Anorganische Chemie II der Ruhr-Universität Bochum, D-44780 Bochum, Germany

Received April 26, 1996

Key Words: Trifluoromethylselanyl / Trifluoromethylsulfanyl / Acetic acid / Esters / Halides / Hexafluoroarsenate

Reaction pathways for the synthesis of the $(CF_3E)_3C$ moieties (E = Se, S) are described. $[(CF_3Se)_3C^+][AsF_6^-]$ was found to be a suitable synthon for the preparation of $(CF_3Se)_3C$ derivatives. It can be prepared either from $(CF_3Se)_4C$ or $(CF_3Se)_3CF$ and AsF_5 in liquid SO_2 . Direct access to $(CF_3Se)_3CF$ was realized by the reaction of $FCBr_3$ with $Hg(SeCF_3)_2$. Treatment of $[(CF_3Se)_3C^+][AsF_6^-]$ with potassium halides provided $(CF_3Se)_3CX$ (X = F, Cl, Br). A different course took the reaction with KI, as $CF_3SeSeCF_3$ and $(CF_3Se)_2C=C(SeCF_3)_2$ were formed as main products. Minor amounts of $(CF_3Se)_3CC(SeCF_3)_3$ were formed which could be

isolated and unambiguously characterized. Only two routes led to a threefold CF₃S-substituted acetic acid ester (CF₃S)₃CC(O)OR [R = CH₃, (CH₃)₃C]: Metatheses between (CF₃S)₂CBrC(O)OCH₃ and Hg(SCF₃)₂ and metalation of (CF₃S)₂CHC(O)OR [R = CH₃, (CH₃)₃C] with NaH followed by reaction with CF₃SCl. Other precursors such as (CF₃S)₂CXC(O)OR' [X = H, Br; R' = Me₃Si, (n-C₄H₉)₃Sn] and (CF₃S)₂CBrC(O)Y (Y = Cl, Br) were synthesized but could not be converted to the corresponding (CF₃S)₃C derivatives. Attempts to hydrolyze (CF₃S)₃CC(O)OR to (CF₃S)₃CC(O)OH failed.

With the synthesis of $[(CF_3S)_3C^+][AsF_6^-]$ a building block for the preparation of compounds containing a $(CF_3S)_3C$ moiety became available. Thus it is nucleophilically attacked by halide ions such as F^- , Cl^- , Br^- leading to the formation of $(CF_3S)_3CX$ (X = F, Cl, Br) as stable colorless liquids in good yields. The reaction with I^- was of special interest. An excess of iodide reacts in liquid SO_2 with $[(CF_3S)_3C^+][AsF_6^-]$ to give good yields of $(CF_3S)_3CC(SCF_3)_3^{[1]}$ according to

$$2 [(CF_3S)_3C^+][AsF_6^-] + 2 KI \xrightarrow{20^{\circ}C/2 d}$$

$$(CF_3S)_3CC(SCF_3)_3 + I_2 + 2 K[AsF_6]$$

This procedure provides a better access (86%) to the already known ethane derivative which was prepared by photolysis of $(CF_3S)_2C=S$ in 18% yield^[2]. Attempts to synthesize the corresponding $(CF_3Se)_3CC(SeCF_3)_3$ by irradiation of $(CF_3Se)_2C=S$ and $CF_3Se(CF_3S)C=S$ with UV light gave only $CF_3S(CF_3Se)_2CC(SeCF_3)_2SCF_3$ and $(CF_3S)_2-CF_3SeCCSeCF_3(SCF_3)_2$, respectively^[3].

The first problem to be solved was the synthesis of $[(CF_3Se)_3C^+][AsF_6^-]$ and its application as a synthon for the preparation of compounds with a $(CF_3Se)_3C$ moiety, especially $(CF_3Se)_3CC(SeCF_3)_3$. In addition, attempts were made to synthesize – besides the already known CF_3S -substituted acids $(CF_3S)_n(CH_{3-n}C(O)OH (n = 1^{[4]}, 2^{[5]})$ – the unknown $(CF_3S)_3CC(O)OH$ and some of its derivatives. Already known are $(CF_3S)_3CC(O)OC_2H_5$, $(CF_3S)_3CCN$, $(CF_3S)_3CC(O)NH_2$, and $(CF_3S)_3CC(O)NCO^{[6]}$.

Preparation and Chemical Reactions of Tris(trifluoromethylsclanyl)methylium Hexafluoroarsenate (1)

Suitable starting materials for the preparation of 1 are (CF₃Se)₄C and (CF₃Se)₃CF. They are prepared by metathesis between CBr₄ or CBr₃F and Hg(SeCF₃)₂ according to:

$$CBr_4 + 4 Hg(SeCF_3)_2 \rightarrow (CF_3Se)_4C^{[3]} + 4 CF_3SeHgBr$$

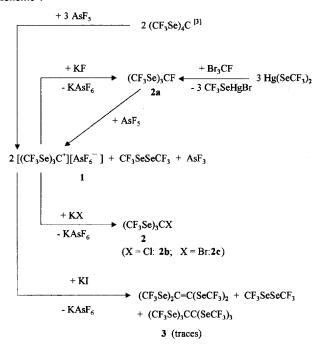
 $CBr_3F + 3 Hg(SeCF_3)_2 \rightarrow (CF_3Se)_3CF + 3 CF_3SeHgBr$

Since less Hg(SeCF₃)₂ is needed for the preparation of (CF₃Se)₃CF its application is superior to (CF₃Se)₄C. The reactions of (CF₃Se)₃CF or (CF₃Se)₄C, with AsF₅ are carried out in liquid SO₂ and proceed almost quantitatively according to:

$$(CF_{3}Se)_{3}CF + AsF_{5} \rightarrow [(CF_{3}Se)_{3}C^{+}][AsF_{6}^{-}]$$

$$1$$

$$2 (CF_{3}Se)_{4}C + 3 AsF_{5} \rightarrow$$


$$2 [(CF_{3}Se)_{3}C^{+}][AsF_{6}^{-}] + CF_{3}SeSeCF_{3} + AsF_{3}$$

$$1$$

Yellow 1 is stable at 20 °C in the absence of nucleophiles but it reacts with KX (X = F, Cl, Br) in SO₂ at 20 °C (16 h) to provide (CF₃CSe)₃CX (2) in good yields. The colorless liquids are thermally less stable than the corresponding sulfur homologs and decompose slowly at 20 °C with the formation of CF₃SeSeCF₃. 1 shows a completely different behavior towards KI. Instead of the expected (CF₃Se)₃CI or (CF₃Se)₃CC(SeCF₃)₃ the main products are (CF₃Se)₂C=C(SeCF₃)₂ and CF₃SeSeCF₃ together with KAsF₆ and I₂. Only traces of (CF₃Se)₃CC(SeCF₃)₃ could be detected and finally also be isolated. Hexakis(trifluoro-

methylselanyl)ethane (3) does not dissociate homolytically in solution at 20 °C reversibly into (CF₃Se)₃C• radicals in contrast to (CF₃S)₃CC(SCF₃)₃^[2]. In Contrast to the sulfur analog, 3 does not show a (CF₃Se)₂C• peak in its mass spectrum^[2]. Scheme 1 gives a summary of the new reactions described in this paper.

Scheme 1

Synthesis of $(CF_3S)_nCH_{3-n}C(O)OR$ Derivatives (n = 2, 3) and Their Hydrolysis Reactions

For a successful preparation of (CF₃S)₃CC(O)OH and its derivatives the following strategies were pursued:

- a) Preparation of (CF₃S)₂CHC(O)OR [R = SiMe₃, SnBu₃, CH₃, C(CH₃)₃], metalation of the C-H bond with NaH followed by electrophilic substitution with CF₃SCl.
- b) Bromination of (CF₃S)₂CHC(O)OR affording (CF₃S)₂BrCC(O)OR followed by nucleophilic substitution with Hg(SCF₃)₂, AgSCF₃, (CH₃)₃SiSCF₃ or *N*-trifluoromethylsulfanylsuccinimide.
 - c) Hydrolysis of the synthesized esters.

The normal route to silyl esters $\bf 4a$ and $\bf 4d$ involves reaction of the acids $(CF_3S)_nCH_{3-n}C(O)OH$ (n=1,2) with $(CH_3)_3SiCl$, but the most convenient access to bis(trifluoromethylsulfanyl)acetic acid trimethylsilyl ester $\bf (4d)$ consists of the preparation of $\bf (CF_3S)_2CHC(O)OAg$ $\bf (4b)$ and subsequent treatment with $\bf (CH_3)_3SiCl$. Direct esterification of bis(trifluoromethylsulfanyl)acetic acid $\bf (4c)$ with $\bf (CH_3)_3SiCl$ is troublesome since $\bf 4c$ and $\bf 4d$ have very similar boiling points and purification by distillation is tedious and timeconsuming. The corresponding $\bf Bu_3Sn$ ester $\bf (4e)$ was prepared from $\bf (4c)$ and $\bf Bu_3SnH$ (see Scheme 2). The other two esters employed, bis(trifluoromethylsulfanyl)acetic acid methyl $\bf (13)$ $\bf (4g)$ and $\bf (2f)$ and $\bf (2f)$, were obtained from $\bf (CF_3S)_2C=C=O$ and $\bf (2f)$ and $\bf (2f)$ and $\bf (2f)$ and $\bf (2f)$ are obtained from $\bf (2f)$ and $\bf (2f)$ are obtained from $\bf (2f)$ and $\bf (2f)$ are obtained from $\bf (2f)$ and $\bf (2f)$ and $\bf (2f)$ are obtained from $\bf (2f)$ and $\bf (2f)$ are obtained from $\bf (2f)$ and $\bf (2f)$ are obtained from $\bf (2f)$ and $\bf (2f)$ and $\bf (2f)$ and $\bf (2f)$ are obtained from $\bf (2f)$ and \bf

CF₃SCl did not yield the expected compounds with **4d** and **4e**, but in the other two cases tris(trifluoromethylsulfanyl)-acetic acid methyl- (**6a**) and *tert*-butyl ester (**6b**) were formed (see Scheme 3).

Scheme 2

Scheme 3

$$(CF_{3}S)_{2}CHC(O)OCH_{3} \longrightarrow (CF_{3}S)_{2}CBrC(O)OCH_{3}$$

$$(CF_{3}S)_{2}CHC(O)OCH_{3} \longrightarrow (CF_{3}S)_{2}CHC(O)OCH_{3} \longrightarrow (CF_{3}S)_{2}CHC(O)OCH_{3} \longrightarrow (CF_{3}SH)$$

$$(CF_{3}S)_{2}CHC(O)OCH_{3} \longrightarrow (CF_{3}SH)$$

$$(CF_{3})_{2}CFC(O)OCH_{3} \longrightarrow (CF_{3}SH)$$

$$(CF_3S)_2C=C=O \xrightarrow{+(CH_3)_3COH} (CF_3S)_2CHC(O)OC(CH_3)_3$$

$$\xrightarrow{\text{1. NaH}} (CF_3S)_3CC(O)OC(CH_3)_3$$

$$\xrightarrow{\text{6b}}$$

According to the second route (CF₃S)₂CHC(O)OH could be brominated with bromine in the presence of PCl₃ as a catalyst to afford bromo-bis(trifluoromethylsulfanyl)acetic acid (5a) which was treated with (CH₃)₃SiCl or nBu₃SnCH=CH₂ to furnish the corresponding esters 5b and 5c (see Scheme 2). Direct bromination of 4g with *N*-bromosuccinimide (NBS) in Br(CF₃S)₂CC(O)OCH₃ (5d) in 85% yield (see Scheme 3). Bromination of 4f with NBS under various reaction conditions failed. In all cases the starting compounds could be recovered. No nucleophilic substitution $Br(CF_3S)_2CC(O)OR$ (R = SiMe₃, nBu_3Sn) was observed when Hg(SCF₃)₂, AgSCF₃, and Me₃SiSCF₃ were used. The reactions studied so far provided two suitable precursors of for the synthesis $(CF_3S)_3CC(O)OH$,

 $(CF_3S)_3CC(O)OR'$ [R = CH_3 , $C(CH_3)_3$]. Attempts to convert these two esters into the free acid by hydrolysis under acidic condition by varying the reaction parameters such as temperature, time, and concentrations yielded only the unchanged starting compounds. Attempts to pyrolyze $(CF_3S)_3CC(O)OC(CH_3)_3$ to $(CF_3S)_3C(O)OH$ and $(CH_3)_2C=CH_2$ failed as the ester was stable up to 225°C. At higher temperatures decomposition with cleavage of CF_3S groups occured.

Therefore, a new concept was applied: Preparation of $Br(CF_3S)_2CC(O)O(O)CR$ by reaction of $Br(CF_3S)_2C(O)Cl$ with RC(O)OM followed by nucleophilic substitution with $Hg(SCF_3)_2$. Hydrolyses should give the desired acid $(CF_3S)_3CC(O)OH$.

Chlorination of Br(CF₃S)₂CC(O)OH with SOCl₂ or ClC(O)C(O)Cl gave Br(CF₃S)₂CC(O)Cl in about 25% yield. Therefore, a more efficient method was applied. In a two-step reaction (CF₃S)₂CHC(O)OH was first chlorinated with SOCl₂ to give (CF₃S)₂CHC(O)Cl and then brominated with N-bromosuccinimide in the presence of HBr to furnish 7a in 75% yield, but no reaction took place with RC(O)OM $[M = Na, Ag; R = CH_3, CF_3, (CF_3S)_2CH]$. An attempt to synthesize (CF₃S)₃CC(O)Cl from (CF₃S)₂CHC(O)Cl and N-trifluoromethylsulfanylsuccinimide prepared from silver succinimide and CF₃SCl failed as well. Bromination of [(CF₃S)₂CHC(O)]₂O with bromine in CCl₄ yielded (CF₃S)₂CBrC(O)Br (7b) which did not react with Hg(SCF₃)₂ (see Scheme 4). However, **6a** became available yield almost quantitative by reaction $Br(CF_3S)_2CC(O)OCH_3$ with $Hg(SCF_3)_2$ (see Scheme 3).

Scheme 4

$$\begin{array}{c} \textbf{5a} & \frac{\text{CIC(O)C(O)Cl}}{(\text{or SOCl}_2)} \\ & & & \\ \textbf{4c} & \frac{1. \text{SOCl}_2}{O} \\ \textbf{2.} & & & \\ \hline &$$

Experimental

All experiments were carried out under argon in oven-dried glassware with strict exclusion of moisture. Volatile materials and solvents were manipulated in vacuo in a standard vacuum system with teflon-stemmed Young valves, solids in an argon glove box. Solvents were dried according to published procedures^[7].

Microanalyses: Carlo-Erba Elementanalyser model 1106. — IR: Bruker IFS 66 FT, solids as KBr disks, liquids as capillary films and gases in a 10-cm cell with KBr windows. — NMR: Bruker WP 80 or AM 400. Standards used: CFCl₃ (19F), Si(CH₃)₄ (1H, 13C, 29Si), (CH₃)₂Se (77Se), Sn(CH₃)₄ (117Sn); internal lock and solvent CDCl₃. Complex, incompletely resolved signals and higher-order spectra were classified as multiplets. — MS: Varian MAT CH5 (70 eV). — GC/MS: Hewlett-Packard 5989A, combined with a Hewlett-Packard 5890 (12.5-m capillary column covered with OV 1), 70 eV.

 $Hg(SeCF_3)_2^{[8]}$, $(CF_3Se)_4C^{[3]}$, $CF_3SCI^{[9]}$, $CF_3SSCF_3^{[10]}$, $Hg(SCF_3)_2^{[11]}$, $AgSCF_3^{[11]}$, $CH_{3-n}(SCF_3)_nC(OC_2H_5)_3^{[5e]}$, $CH_{3-n}(SCF_3)_nC(O)OH^{[5e]}$, $(CF_3S)_2C=C=O^{[5e]}$, $(CH_3)_3SiSCF_3^{[12]}$, and $(CF_3S)_2CHC(O)OCH_3^{[13]}$ were prepared according to literature methods. The other starting materials used were commercially available and used without further purification.

Tris(trifluoromethylselanyl)methylium Hexafluoroarsenate (1): In a 200-ml Carius tube equipped with a teflon-stemmed Young valve and a magnetic stirring bar 0.8 g (1.3 mmol) of $(CF_3Sc)_4C$ (dried with P_4O_{10}) was placed. Afterwards 0.35 g (2.0 mmol) of AsF_5 and 4 g of SO_2 as a solvent were condensed. The reaction mixture was stirred for 16 h at 20 °C. Solvent and volatile products were removed in vacuo, leaving 0.8 g (95%) of 1 as a yellow powder.

An alternative route to 1 is the reaction of (CF₃Se)₃CF with AsF₅ in SO₂. According to the procedure described above 1.0 g (2.1 mmol) of (CF₃Se)₃CF was treated with 0.4 g (2.4 mmol) of AsF₅ in SO₂ at 20 °C (16 h) to yield 1.1 g (80%) of 1; m.p. 205 °C. – IR: $\tilde{v} = 1208 \text{ cm}^{-1}$ (m, br.), 1167 (m), 1087 (s), 817 (m), 740 (m), 700 (m), 575 (vw), 563 (w). – ¹³C NMR (external standard: CDCl₃, solvent SO₂): $\delta = 119.1$ (s), 127.8 [q, ¹J(C-F) = 345.2 Hz]. – ¹⁹F NMR: $\delta = 30.2$ (s). – ⁷⁷Se NMR: $\delta = 989$ (m). – MS; m/z (%): 329 [(CF₃Se)₂CF⁺] (100), 260 (17), 151 (65), 111 (60), 80 (15), 69 (95), 31 (17). – C₄AsF₁₅Se₃ (644.8): calcd. C 7.4; found C 7.3.

Fluorotris (trifluoromethylselanyl) methane (2a): The reaction was carried out in a 100-ml Carius tube equipped as described above. Into the tube 1.0 g (3.7 mmol) of Br_3CF and 5.6 g (11.3 mmol) of $Hg(SeCF_3)_2$ were filled, the mixture was then evacuated and sealed. It was heated at 80 °C and stirred for 6 d, then separated by fractional condensation (three traps cooled to 0, -30, and -196 °C). The fraction condensed at -30 °C contained 1.0 g (60%) of 2a with high purity.

An alternative synthesis is the reaction of 0.5 g (0.8 mmol) of 1 with 60 mg (1.0 mmo) of KF in 2.5 g of SO₂ carried out in a 20-ml Carius tube under analogous reaction conditions providing 0.3 g (80%) of 2a. b.p. 45 °C/10⁻³ Torr. – IR: $\tilde{v} = 1276$ cm⁻¹ (w), 1156 (s), 1088 (s), 731 (s), 418 (w). – ¹³C NMR: $\delta = 82.1$ [d, ¹J(C-F) = 370.0 Hz], 123.9 [q, ¹J(C-F) = 339.5 Hz]. – ¹⁹F NMR: $\delta = -32.0$ (d), -81.5 [dec, ⁴J(F-F) = 7.9 Hz]. – ⁷⁷Se NMR: $\delta = 759$ [md, ²J(Se-F) = 52.7 Hz]. – MS; m/z (%): 329 [(CF₃Se₃₂CF⁺] (62), 241 (10), 160 (10), 149 (5), 111 (60), 80 (11), 69 (100). – C₄F₁₀Se₃ (474.9): calcd. C 10.1; found C 9.8.

Chlorotris(trifluoromethylselanyl)methane (**2b**): Similar to the reaction parameters described in the alternative syntheses described before 0.5 g (0.8 mmol) of **1** and 0.11 g (1.5 mmol) of KCl were allowed to react in liqud SO₂. The products were separated by fractional condensation at 0, -20, and -196°C. At -20°C **2b** was trapped as a colorless liquid with high purity. Byproducts such as CF₃SeSeCF₃, (CF₃Se)₂C=C(SeCF₃)₂, and CF₃SeC|CSeCF₃ were condensed at -196°C and identified by ¹⁹F-NMR spectroscopy. Their δ values agreed with literature values. Yield: 0.18 g (45%).

FULL PAPER ______ A. Haas, G. Möller

As slow decomposition was already observed on standing at 20 °C no boiling point culd be estimated. IR: $\tilde{v} = 2244$ cm⁻¹ (w), 1276 (m), 1165 (ws), 1081 (vs), 769 (w), 741 (s), 675 (m), 532 (w). $^{-13}$ C NMR: $\delta = 39.1$ (s), 124.5 [q, $^{1}J(\text{C-F}) = 337.6$ Hz]. $^{-19}$ F NMR: $\delta = -34.5$ (s). $^{-77}$ Se NMR: $\delta = 824$ (m). $^{-}$ MS; mlz (%): 457 [(CF₃Se)₂CF⁺] (<1), 345 (23), 276 (2), 241 (4), 172 (6), 127 (45), 80 (10), 69 (100). $^{-}$ C₄ClF₉Se₃ (491.3): calcd. C 9.8, Cl 7.2; found: C 9.8, Cl 6.8.

Bromotris (trifluoromethylselanyl) methane (2c): As described before 0.5 g (0.8 mmol) of 1 was allowed to react with 140 mg (1.2 mmol) of KBr in liquid SO₂. At $-20\,^{\circ}$ C 0.35 g (84%) of 2c condensed as an unstable colorless liquid at 20 °C. IR: $\hat{v} = 1274$ cm⁻¹ (w), 1147 (vs), 1062 (vs), 970 (w, br), 899 (w, br), 741 (s), 701 (w), 670 (w), 626 (w), 532 (w). $-^{13}$ C NMR: $\delta = 12.7$ (s), 124.5 [q, 1 J/C-F) = 339.5 Hz]. $-^{19}$ F NMR: $\delta = -35.4$ (s). $-^{77}$ Se NMR: $\delta = 848$ (m). $-^{13}$ MS; m/z (%): 457 [(CF₃Se)₃C⁺] (1), 389/387 (14), 311 (4), 241/239 (20), 172/171 (14); 93 (13), 69 (100). $-^{13}$ C- 13 C- $^$

Hexakis(trifluoromethylselanyl)ethane (3): As described before 0.5 g (0.8 mmol) of 1 was treated with 0.15 g (0.9 mmol) of KI in 3 g of liquid SO₂ at 20 °C for 48 h. The volatile products were fractioned on a standard vacuum system by using three traps, cooled to 0, -78, and -196 °C. The fraction collected at -78 °C consisted of a mixture of (CF₃Se)₂C=C(SeCF₃)₂ and CF₃SeSeCF₃. Both substances were unambiguously characterized by ¹⁹F NMR and GC/MS. About 98% of (CF₃Se)₂C=C(SeCF₃)₂ were isolated. The solid residue in the Carius tube was sublimed at 65 °C/10⁻³ Torr providing small amounts of a colorless powder characterized as 3; m.p. 125 °C. -18: $\bar{\nu} = 1199$ cm⁻¹ (m), 1141 (s), 1081 (vs), 1053 (sh), 738 (m), 640 (vw), 534 (vw). $-^{19}$ F NMR: $\delta = -33.4$ (s). - MS; m/z (%): 765 [(CF₃Se)₅C₂+] (18), 618 (80), 547 (21), 469 (21), 400 (23), 322 (42), 253 (28), 184 (77), 69 (100). - C₈F₁₈Se₆ (911.8): calcd. C 10.5; found C 10.4.

Trimethylsilyl Trifluoromethylsulfanylacetate (4a): In a 25-ml two-necked flask equipped with a reflux condenser, magnetic stirring bar, and a drying tube filled with CaCl₂ 4.0 g (25.0 mmol) of CF₃SCH₂C(O)OH and 5.0 g (45.9 mmol) of Mc₃SiCl were placed and refluxed for 72 h. The end of the reaction was established by taking regularly probes which were analyzed by 19F-NMR spectroscopy. The reaction mixture was fractionated in vacuo by using a Zinke apparatus. The pure ester was obtained as a colorless liquid. Yield 5.1 g (88%); b.p. 96°C/10 Torr. – IR: $\hat{v} = 2966 \text{ cm}^{-1}$ (m), 2907 (w), 1724 (m), 1312 (s), 1258 (s), 1201 (s), 1113 (vs), 946 (s), 850 (s), 724 (m), 697 (m). $- {}^{1}H$ NMR: $\delta = 0.32$ (s, 9H, CH₃), 3.72 (s, 2H, CH₂). $- {}^{13}$ C NMR: $\delta = -0.53$ [q, 1 J(C-H) = 120.2 Hz, 3 C], 33.4 [t, ${}^{1}J(C-H) = 141.1$ Hz, 1 C], 130.3 [tq, ${}^{1}J(C-F) =$ 307.1 Hz, ${}^{3}J(C-H) = 5.7$ Hz, 1 C], 167.6 [t, ${}^{2}J(C-H) = 5.7$ Hz, C=O]. $- {}^{29}\text{Si NMR}$: $\delta = 27.9$ [dec, ${}^{2}J(\text{Si-H}) = 7.3$ Hz]. - MS; m/z (%): 217 [M⁺ - CH₃] (4), 143 (18), 117 (11), 96 (18), 77 (71), 73 (100), 69 (14). - C₆H₁₁F₃O₂SSi (232.1): calcd. C 31.0, H 4.7, S 13.8; found C 30.3, H 4.6, S 13.4.

Silver Bis(trifluoromethylsulfanyl)acetate (4b): Neutralization of 4.4 g (16.9 mmol) of 4c with 2.9 g (17.0 mmol) of a solution of AgNO₃ in 170 ml of H₂O provided after 30 min 5.1 g (82%) of 4b; m.p. 125 °C (dec.). – IR: \tilde{v} = 1626 cm⁻¹ (s), 1359 (s), 1151 (s), 1088 (s), 913 (w), 827 (w), 758 (m), 719 (m). – ¹H NMR (D₂O): δ = 7.2 (s). – ¹³C NMR (CDCl₃): δ = 51.0 [d, ¹J(C-H) = 116 Hz], 128.7 [q, ¹J(C-F) = 309.0 Hz], 170.5 (s). – ¹⁹F NMR: δ = 39.7 (s). – MS; m/z (%): 215 [(CF₃S)₂CH⁺] (72), 145 (35), 115 (85), 69 (100), 45 (75). – C₄HAgF₆O₂S₂ (367.0): calcd. C 13.1, H 0.3, S 17.4; found C 12.8, H 0.4, S 17.5.

Trimethylsilyl Bis(trifluoromethylsulfanyl)acetate (4d): In an apparatus as described for the preparation of 4a 4.5 g (17.2 mmol) of 4c was allowed to react with 3.8 g (34.9 mmol) of Me₃SiCl at reflux temperature. After 12 h the mixture was separated by fractional distillation in vacuo giving 4.0 g (70%) of 4d as a colorless liquid. This procedure was rather time-consuming as 4d and 4c have similar boiling points.

An alternative route is the reaction of 4.0 g (10.9 mmol) of **4b** with 2.4 g (11.0 mmol) of Me₃SiCl under similar reaction conditions. Yield: 3.3 g (91%); b.p. 62 °C/5 Torr. – IR: $\hat{v} = 2967$ cm⁻¹ (m), 2908 (w), 2262 (w), 1729 (s), 1418 (m), 1259 (vs), 1091 (vs), 952 (s), 847 (vs), 759 (s), 681 (m), 469 (m). – ¹H NMR: $\delta = 0.33$ (s, 9H, CH₃), 5.10 (s, 1H, CH). – ¹³C NMR: –0.79 [q, ¹J(C-H) = 122.0 Hz, 3 C, CH₃), 48.5 [d, ¹J(C-H) = 158.5 Hz, 1 C, CH], 129.2 [dq, ¹J(C-F) = 304.2 Hz, ³J(C-H) = 3.8 Hz, 2 C, CF₃], 165.5 [d, ²J(C-H) = 5.7 Hz, 1 C, C=O]. – ¹⁹F NMR: $\delta = -41.3$ (s). – ²⁹Si NMR: $\delta = 31.4$ [dec, ²J(Si-H) = 7.1 Hz]. – MS; m/z (%): 317 [M⁺ – CH₃] (2), 117 (13), 77 (25), 73 (100), 69 (13). – C₇H₁₀F₆O₂S₂Si (332.2): calcd. C 25.3, H 3.0, S 19.3; found C 25.4, H 3.3, S 19.7.

Tri(n-butyl)stannyl Bis(trifluoromethylsulfanyl)acetate (4e): In a 25-ml two-necked flask fitted with a magnetic stirring bar, reflux condenser and drying tube filled with CaCl2, and a septum 1.5 g (5.8 mmol) of 4c was placed and 1.7 g (5.8 mmol) of $(n-C_4H_9)_3SnH$ was added dropwise through the septum by means of a microsyringe in within 3 min. After H2 evolution had ceased the mixture was stirred for 30 min. During this time colorless crystals of 4e precipitated. Yield: 2.9 g (91%); m.p. 33 °C. – IR: $\tilde{v} = 2960 \text{ cm}^{-1}$ (s), 2733 (s), 2253 (m), 1880 (w), 1624 (s), 1466 (m), 1339 (m), 1122 (s), 1024 (s), 962 (m), 938 (m), 878 (m), 833 (m), 757 (m), 673 (m), 614 (m), 552 (m), 542 (m), 470 (m), - ¹H NMR: $\delta = 0.9$ (m), 1.4 (m), 5.1 (s). $- {}^{13}$ C NMR: $\delta = 13.5$ [tq, ${}^{1}J$ (C-H) = 124.0 Hz, ${}^{2}J$ (C-H) = 3.8 Hz, 3 C, CH₃], 17.1 [t, ${}^{1}J(C-H) = 125.9$ Hz, 3 C, CH₂], 27.0 [t, ${}^{1}J(C-H) = 124.0 \text{ Hz}$, 3 C, CH_{2}], 27.5 [t, ${}^{1}J(C-H) = 122.1$ Hz, 3 C, CH₂], 48.2 [d, ${}^{1}J(C-H) = 158.3$ Hz, 1 C, CH], 129.1 [dq, ${}^{1}J(C-F) = 310.9 \text{ Hz}, {}^{3}J(C-H) = 5.7 \text{ Hz}, 2 \text{ C}, CF_{3}, 165.5 \text{ [d}, {}^{2}J(C-H)$ H) = 5.7 Hz, 1 C, CO]. $- {}^{19}$ F NMR: $\delta = -41.4$ (s). $- {}^{119}$ Sn NMR: $\delta = 160 \text{ (m)}$. - MS; m/z (%): 493 [M⁺ - C₄H₉] (35), 291 (22), 253 (100), 177 (22), 69 (5), 57 (39), 29 (41). $-C_{16}H_{28}F_6O_2S_2Sn$ (548.8): calcd. C 35.0, H 5.7, S 11.7; found C 35.1, H 5.1, S 11.4.

tert-Butyl Bis (trifluoromethylsulfanyl) acetate (4f): In a 20-ml Carius tube equipped as described for 1 0.5 g (6.8 mmol) of (CH₃)₃COH and 1.8 g (7.4 mmol) of (CF₃S)₂C=C=O were condensed one consecutively with stirring at 20 °C (16 h). After fractional condensation (-20, -78, -196 °C) 4f condensed at -20 °C analytically pure. Yield: 2.0 g (93%); b.p. 51 °C/0.1 Torr. – IR: \tilde{v} = 2987 cm⁻¹ (m), 2940 (w), 1740 (s), 1480 (w), 1460 (w), 1373 (m), 1305 (m), 1263 (sh), 1098 (vs), 955 (w), 850 (m), 758 (m), 463 (w). – ¹H NMR: δ = 1.5 (s, 9 H), 5.0 (s, 1 H). – ¹³C NMR: δ = 27.4 [mq, ^{1}J (C-H) = 131.6 Hz, 3 C, CH₃], 47.9 [d, ^{1}J (C-H) = 156.4 Hz, 1 C, CH], 85.6 (s), 128.9 [dq, ^{1}J (C-F) = 314.7 Hz, ^{3}J (C-H) = 5.7 Hz, 2 C, CF₃], 164.7 [d, ^{2}J (C-H) = 5.7 Hz, 1 C, CO]. – ¹⁹F NMR: δ = -41.3 (s). – MS; m/z (%): 215 (18) [M⁺], 69 (14), 59 (31), 57 (100). – $^{2}C_{8}H_{10}F_{6}O_{2}S_{2}$ (316.1): calcd. C 30.4, H 3.2, S 20.25; found C 29.9, H 2.9, S 19.5.

Bromobis (trifluoromethylsulfanyl) acetic Acid (5a) was prepared as described for 4a by the reaction of 3.45 g (13.3 mmol) of 4c with a solution of 0.8 ml (15.6 mmol) of Br_2 in 20 ml of C_6H_6 in the presence of a catalytical amount (0.1 ml) of PCl_3 . After refluxing of the mixture for 72 h separation was accomplished by fractional condensation in a conventional vacuum apparatus. Among the three traps cooled to 0, -30, and $-196\,^{\circ}C$ 5a condensed at $0\,^{\circ}C$ as colorless crystals. Yield: 2.5 g (55%). Instead of PCl_3 also PBr_3

could be used as a catalyst but the yield decreased to 38%. Similar observations were made with CCl₄ as a solvent and PCl₃ or PBr₃ as a catalyst. The yield dropped to 30 or 32%, respectively; m.p. 48 °C. – IR: $\tilde{v}=3152$ cm⁻¹ (m, br.), 1729 (m), 1400 (w), 1253 (w), 1161 (m), 1098 (s), 758 (vw), 695 (w). – ¹H NMR: $\delta=9.2$ (s). – ¹³C NMR: $\delta=56.3$ (s), 127.7 [q, ¹J(C-F) = 314.7 Hz], 169.0 (s). – ¹⁹F NMR: $\delta=-40.3$ (s). – MS; m/z (%): 295/293 [(CF₃S)₂CBr⁺] (1), 259 (55), 239/237 (10), 215 (20), 145 (78), 101 (5), 76 (72), 69 (100), 63 (18), 44 (75). – C₄HBrF₆O₂S₂ (339.0): calcd. C 14.2, H 0.3, S 18.8; found C 14.0, H 0.2, S 18.8.

Trimethylsilyl Bromobis (trifluoromethylsulfanyl) acetate (**5b**): As described for **4a** a mixture of 2.0 g (5.9 mmol) of **5a** and 1.3 g (11.9 mmol) of Me₃SiCl was stirred at 50 °C for 6 h. Fractional condensation of the mixture using traps cooled to 0, -30, and -196 °C provided **5b** at 0 °C with high purity. Yield: 2.0 g (83%); b.p. 53 °C/2 · 10⁻¹ Torr. – IR: $\tilde{v} = 3280$ cm⁻¹ (m, br.), 2965 (m), 2907 (w), 2245 (w), 1722 (vs), 1416 (m), 1279 (vs), 1091 (vs), 959 (s), 459 (vs), 733 (s), 678 (s), 617 (m), 464 (m), 443 (m). – ¹H NMR: $\delta = 0.38$ (s), ¹³C NMR: $\delta = -0.94$ [q, ¹J(C-H) = 120.2 Hz, 3 C, CH₃], 59.5 (s, 1 C, CBr), 127.9 [q, ¹J(C-F) = 312.8 Hz, 2 C, CF₃], 163.7 (s, 1 C, CO). – ²⁹Si NMR: $\delta = 34.1$ [dec, ²J(Si-H) = 7.0 Hz]. – MS; mlz (%): 397/395 [M⁺ – CH₃], 295/293 (2), 145 (30), 77 (30), 73 (100), 69 (55), 45 (43). – C₇H₉BrF₆O₂S₂Si (411.1): calcd. C 20.4, H 2.2, S 15.6; found C 20.2, H 2.1, S 14.7.

Tri(n-butyl)stannyl Bromobis(trifluoromethylsulfanyl)acetate (5c): In a 10-ml two-necked flask equipped with magnetic stirring bar, reflux condenser and gas bubble counter 2.5 g (7.4 mmol) of 5a was placed and the flask was sealed with a septum. As described for 4e 2.3 g (7.4 mol) of $(n-C_4H_9)_3$ SnCH=CH₂ was added dropwise at 20 °C. After 5 minutes gas evolution ceased and a colorless precipitate formed. Yield: 4.0 g (85%); m.p. 38 °C. – IR: $\tilde{v} = 3480$ cm^{-1} (w), 2957 (s), 2923 (s), 2854 (s), 1768 (m), 1629 (m), 1457 (m), 1415 (m), 1378 (m), 1340 (m), 1293 (m), 1099 (m), 1023 (m), 961 (w), 876 (w), 790 (w), 758 (w), 668 (w), 602 (w), 511 (w). - ¹H NMR: $\delta = 1.3$ (m), 1.4 (m). $- {}^{13}$ C NMR: $\delta = 13.6$ [tq, ${}^{1}J$ (C-H) = 124.0 Hz, ${}^{2}J(C-H) = 3.8$ Hz, 3 C, CH₃], 17.4 [t, ${}^{1}J(C-H) = 127.8$ Hz, 3 C, CH₂], 27.0 [t, ${}^{1}J$ (C-H) = 125.9 Hz, 3 C, CH₂], 27.5 [t, ${}^{1}J(C-H) = 124.0 \text{ Hz}, 3 \text{ C}, CH_{2}, 60.3 \text{ (s, 1 C, CBr)}, 128.1 \text{ [q, } {}^{1}J(C-H)$ F) = 312.8 Hz, 2 C, CF₃], 167.4 (s, 1 C, CO). - ¹⁹F-NMR: δ = -40.9 (s). $-{}^{119}$ Sn NMR: $\delta = 181$ (m). - MS; m/z (%): 493 $[HC(SCF_3)_2CO_2Sn(C_4H_9)_2^+]$ (5), 291 (12), 253 (61), 177 (38), 101 (5), 69 (20), 57 (58), 41 (58), 29 (100). $-C_{16}H_{27}BrF_6O_2S_2Sn$ (627.7): calcd. C 30.6, H 4.3, S 10.2; found C 30.7, H 4.6, S 9.2.

Methyl Bromobis(trifluoromethylsulfanyl)acetate (5d): As described for the preparation of 5c, 1.6 g (5.8 mmol) of (CF₃S)₂CHC(O)OCH₃, 2.3 g (13.0 mmol) of N-bromosuccinimide and two drops of a 62% aqueous HBr in 10 ml of CCl4 were refluxed for 40 h. The mixture was then fractionated into traps cooled to -25, -78, and -196 °C. The condensate at -25 °C contained 1.7 g (83%) of **5d** with high purity. b.p. 49 °C/0.8 Torr. – IR: $v\ddot{A}$ = 3469 cm^{-1} (w), 3015 (w), 2962 (m), 2267 (vw), 1748 (s), 1439 (s), 1260 (s), 1101 (vs), 1003 (s), 981 (m), 831 (m), 795 (w), 758 (s), 739 (w), 624 (m), 466 (m), 418 (m). $- {}^{1}H$ NMR: $\delta = 4.0$ (s). $- {}^{13}C$ NMR: $\delta = 55.8 \,[q, {}^{1}J(C-H) = 148.8 \,Hz, 1 \,C, CH_{3}], 57.1 \,(s, 1 \,C, CH_{3})$ CBr), $127.8 [q, {}^{1}J(C-F) = 312.8 Hz, 2 C, CF_{3}], 165.0 (s, 1 C, CO).$ - ¹⁹F NMR: $\delta = -40.6$ (s). - MS; m/z (%): 295/293 $[(CF_3S)_2CBr^+]$ (1), 273 (5), 145 (30), 69 (100), 59 (95). -C₅H₃BrF₆O₂S₂ (353.0): calcd. C 17.0, H 0.85, S 18.1; found C 17.3, H 0.70, S 18.6.

Methyl Tris(trifluoromethylsulfanyl)acetate (6a): In a 50-ml Carius tube equipped as described for the preparation of 1, 3.0 g (8.5 mmol) of 5d was mixed with 3.4 g (8.5 mmol) of Hg(SCF₃)₂ and

the mixture was heated at 65 °C for 16 h. The products were separated by fractional condensation (-5, -25, -78 °C) giving 2.9 g (92%) of 6a as the fraction collected at -25 °C.

An alternative synthesis was carried out in a 100-ml three-necked flask equipped with a reflux condenser, and drying tube filled with CaCl₂, magnetic stirring bar, and gas inlet tube. To a suspension of 0.4 g (16.7 mmol) of NaH in 40 ml of ether, a solution of 3.0 g (11.0 mmol) of (CF₃S)₂CHC(O)OCH₃ in 10 ml of ether was dropped at 20 °C. The mixture was stirred for 16 h at 20 °C, cooled to -78 °C and then 5.0 g (36.8 mmol) of CF₃SCl was condensed to this mixture. Afterwards the content was warmed stirring at 20°C during 16 h. Fractional condensation (-25, -78, -196°C) provided 1.0 g (25%) of 6a collected at -25°C; b.p. 48°C/0.5 Torr. - IR: $\tilde{v} = 2964 \text{ cm}^{-1}$ (w), 1776 (m), 1752 (s), 1438 (m), 1260 (s), 1163 (s), 1091 (s), 1004 (m), 920 (m), 828 (w), 759 (s), 651 (w), 544 (w), 474 (w), 447 (w). $- {}^{1}H$ NMR: $\delta = 3.95$ (s). $- {}^{13}C$ NMR: $\delta =$ 54.4 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s), 124.9 [q, ${}^{1}J(C-H) = 150.7 \text{ Hz}$, 1 C, CH₃], 66.8 (s) F) = 312.8 Hz, 3 C, CF₃], 164.0 (s, 1 C, CO). - ¹⁹F NMR: δ = -38.5 (s). - MS, m/z (%): 315 [(CF₃S)₃C⁺] (5), 273 (65), 145 (30), 69 (80), 59 (100). $-C_6H_3F_9O_2S_3$ (374.2): calcd. C 19.25, H 0.8, S 25.7; found C 19.0, H 0.5, S 26.6.

tert-Butyl Tris(trifluoromethylsulfanyl) acetate (**6b**): As described for the alternative synthesis of **6a**, **6b** was prepared from 4.5 g (14.2 mmol) of **4f**, 0.5 g (20.8 mmol) of NaH and 7.0 g (51.5 mmol) of CF₃SCl and purified analogously. Yield: 2.0 g (34%); b.p. 46 °C/ 10^{-2} Torr. – IR: $\tilde{v} = 3447$ cm⁻¹ (w, br.), 2987 (vw), 1768 (m), 1740 (m), 1375 (m), 1262 (m), 1152 (s), 1093 (s), 757 (m). – ¹H NMR: $\delta = 1.5$ (s). – ¹³C NMR: $\delta = 27.1$ [q, ¹J(C-H) = 127.8 Hz, 3 C, CH₃], 67.2 (s), 88.7 (s), 127.5 [q, ¹J(C-F) = 312.8 Hz, 3 C, CF₃], 162.4 (s). – ¹⁹F NMR: $\delta = -38.0$ (s). – MS; m/z (%): 315 [(CF₃S)₃C⁺], (17) 215 (3), 145 (19), 69 (33), 57 (100). – C₉H₉F₉O₂S₃ (416.2): caled. C 26.0, H 2.2, S 23.1; found C 26.3, H 2.1, S 22.6.

Bromobis (trifluoromethylsulfanyl) acetyl Chloride (7a): As described for 4a 5.0 g (19.2 mmol) of 4e and a solution of 9.0 g (76.0 mmol) of SOCl₂ in 5 ml of CCl₄ were refluxed for 12 h. Afterwards 4.1 g (23.0 mmol) of *N*-bromosuccinimide was added under inert gas. This mixture was heated at 85°C for 3 h and then separated by fractional condensation (-25, -45, -196°C). The fraction condensing at -45°C contained 4.5 g (66%) of pure 7a, b.p. 40°C/1 Torr. – IR: \tilde{v} = 1793 cm⁻¹ (s), 1768 (s), 1163 (s), 1097 (vs), 1013 (s), 762 (s), 758 (s), 710 (s), 463 (m), 434 (m). – ¹³C NMR: δ = 64.6 (s, 1 C, CBr), 127. 4 [q, ^{1}J (C-F) = 312.8 Hz, 2 C, CF₃], 167.9 (s, 1 C, CO). – ¹⁹F NMR: δ = -39.6 (s). – MS; m/z (%): 295/293 [(CF₃S)₂CBr⁺] (22), 279/277 (22), 251/249 (21), 242 (18), 231/229/227 (10), 145 (60), 101 (5), 69 (100). – C₄BrClF₆OS₂ (357.4): calcd. C 13.5, S 17.9, Cl 9.9; found C 13.1, S 17.5, Cl 10.1.

Bromobis (trifluoromethylsulfanyl) acetyl Bromide (7b): As described for 4a a mixture of 3.0 g (6.0 mmol) of [(CF₃S)₂CHC(O)]₂O and 2.9 g (18.0 mmol) of Br₂ dissolved in CCl₄ was refluxed for 24 h and subsequently separated by fractional condensation (-20, -50, -196°C). The trap cooled to -50°C contained 4.0 g (83%) of 7b. Boiling point and elemental analytical data could not be determined as the substance decomposed already slowly at 20°C to (CF₃S)₂C=C=O and bromine. IR: \tilde{v} = 3510 cm⁻¹ (w), 2989 (w), 2267 (w), 2138 (m), 1766 (s), 1166 (vs), 1096 (vs), 975 (s), 758 (s), 694 (s), 673 (s), 544 (m), 462 (s). - ¹³C NMR: δ = 69.0 (s), 172.2 [q, ¹J(C-F) = 314.7 Hz], 164.0 (s). - ¹⁹F NMR: δ = -39.3 (s). - MS; m/z (%): 295/293 [(CF₃S)₂CBr⁺] (10), 242 (18), 215 (18), 145 (42), 69 (100), 44 (18), 28 (60).

N-(Trifluoromethylsulfanyl) succinimide (8): As described for 4a to a suspension of 4.0 g (19.0 mmol) of silver succinimide in 15 ml

A. Haas, G. Möller **FULL PAPER**

of ether 3.1 g of (23.0 mmol) CF₃SCl was condensed at -78°C. The mixture was allowed to slowly warm to 20°C (16 h) and was then left for 24 h at this temperature. After removal of the volatile products in vacuo the slightly grey residue was sublimed at 50°C/ 10^{-3} Torr to yield 3.2 g (85%) of 8; m.p. 97°C. – IR: $\tilde{v} = 3402$ cm⁻¹ (w, br), 2951 (w), 1738 (vs), 1430 (m), 1298 (s), 1254 (s), 1229 (s), 1107 (vs), 1009 (vs), 935 (m), 817 (m), 760 (s), 659 (s), 587 (m), 572 (m), 469 (m). $- {}^{1}H$ NMR: $\delta = 2.9$ (s). $- {}^{13}C$ NMR: $\delta = 28.4$ [tt, ${}^{1}J(C-H) = 137.3 \text{ Hz}$, ${}^{2}J(C-H) = 5.1 \text{ Hz}$, 2 C, CH₂], 127.7 [q, ${}^{1}J(\text{C-F}) = 314.7 \text{ Hz}$, 174.4 (s, 2 C, CO). $-{}^{19}\text{F NMR}$: $\delta = -48.4$ (s). - MS; m/z (%): 200 [M⁺] (20), 199 (95), 171 (21), 143 (20), 115 (18), 102 (59), 69 (48), 55 (100), 42 (20), 28 (99). C₅H₄F₃NO₂S (200.1): calcd. C 30.0, H 2.0, S 16.0, N 7.0; found C 30.0, H 1.9, S 14.8, N 7.4.

Methyl Fluorobis(trifluoromethylsulfanyl)acetate (9): In a 50-ml stainless steel autoclave equipped with a magnetic stirring bar and bursting plate 1.1 g (2.9 mmol) of 6a and a solution of 2.0 g (100.0 mmol) of HF in 5 ml of CCl₄ were placed. Into this solution 1.0 g (9.3 mmol) of SF₄ was condensed at −78 °C and the reaction vessel was heated at 110 °C for 3 h. The mixture was filtered through NaF and the filtrate shaken with a saturated NaHCO3 solution. The organic phase was separated and dried with MgSO₄. GC/MS indicated 9 in about 5% yield which was only characterized spectroscopically. – ¹H NMR: $\delta = 4.0$ (s). – ¹⁹F NMR: $\delta = -37.9$ (d, 2) C, CF₃), -113.5 [sept, ${}^{4}J(F-F) = 9.8$ Hz, 1 C, CF]. - MS; m/z(%): 292 [M⁺] (1), 233 (7), 191 (53), 147 (17), 145 (7), 69 (60), 63 (43), 59 (100).

Dedicated to Professor Max Herberhold on the occasion of his 60th birthday

R. Boese, A. Haas, C. Krüger, M. Möller, A. Waterfeld, Chem.

Ber. 1994, 127, 597-603.
A. Haas, K. Schlosser, S. Steenken, J. Am. Chem. Soc. 1979, 101, 6282-6284; A. Haas, K. Schlosser, Tetrahedron Lett. **1976**, 4631-4632

A. Haas, K. W. Kempf, Tetrahedron 1984, 40, 4963–4972.

[4] V. V. Orda, L. M. Yagupolskii, V. F. Bystrov, A. U. Stepanyants, Zhr. Obshch. Khim. 1965, 35, 1628-1636; J. Gen. Chem. USSR 1965, 35, 1631–1637; Chem. Abstr. 1965, 63, 17861; R. M. De Marinis, W. M. Bryan, J. Org. Chem. 1977, 42, 2025-2043

[5] [5a] F. Harris, jr., J. Org. Chem. 1967, 32, 2063-2074. - [5b] W. L. Mendelson, J.-H. Lin, L. B. Killmer, Jr., S. H. Levision, J. Org. Chem. 1983, 48, 298-302. - [5c] A. Haas, M. Lieb, H.-W. Praas, J. Fluorine Chem. 1989, 44, 329-337.

R. Boese, A. Haas, M. Lieb, U. Roeske, Chem. Ber. 1994, 127,

- [7] Houben-Weyl, Methoden in der organischen Chemie (Ed.: E. Müller), Thieme, Stuttgart 1959, vol. 1/2, p. 765; Organicum, 15th ed., VEB Deutscher Verlag der Wissenschaften, Berlin, **1977**, p. 231
- J. W. Dale, H. J. Emeléus, R. N. Haszeldine, J. Org. Chem. 1958, *23*, 2939–2945.
- W. Tullock, D. D. Coffman, J. Org. Chem. 1960, 25, 2016-2022
- [10] A. Haas, U. Krächter, Chem. Ber. 1988, 121, 1833-1840
- [11] E. H. Man, D. D. Coffman, E. L. Muetterties, J. Am. Chem. Soc. **1959**, 81, 3575–3577
- [12] A. Haas, R. Kratz, unpublished results; R. Kratz, Diploma thesis, Ruhr University Bochum, 1989.
- [13] A. Haas, G. Radau, unpublished results; G. Radau, Ph. D. thesis, Ruhr University Bochum, 1995.

[96086]